

Massively Parallel Algorithms Classification & Prediction Using Random Forests

G. Zachmann University of Bremen, Germany cgvr.cs.uni-bremen.de

Classification Problem Statement

- Given a set of points $\mathcal{L} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\} \in \mathbb{R}^d$ and for each such point a label $y_i \in \{l_1, l_2, \dots, l_n\}$
 - Each label represents a class, all points with the same label are in the same class
- Wanted: a method to decide for a not-yet-seen point x which label it most probably has, i.e., a method to predict class labels
 - We say that we learn a classifier C from the training set \mathcal{L} :

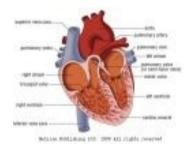
$$C: \mathbb{R}^d \to \{l_1, l_2, \ldots, l_n\}$$

Typical applications:

Bremen

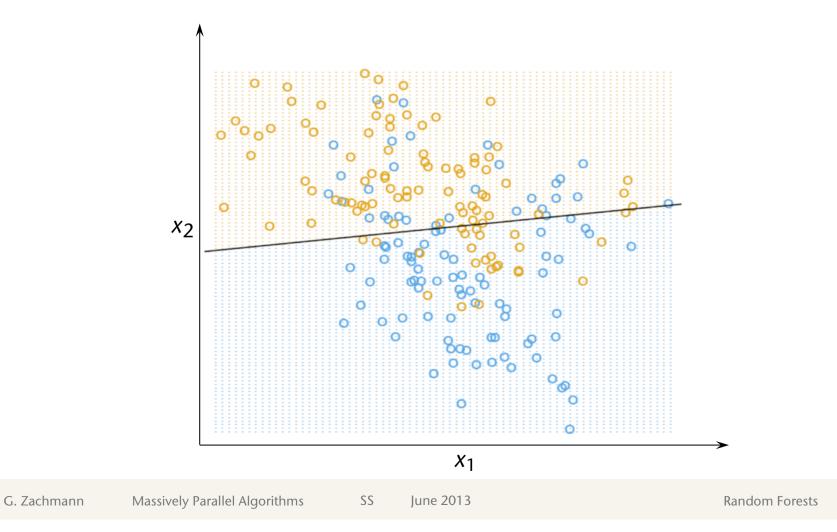
U

- Computer vision (object recognition, ...)
- Credit approval
- Medical diagnosis
- Treatment effectiveness analysis



One Possible Solution: Linear Regression

- Assume we have only two classes (e.g., "blue" and "yellow")
- Fit a plane through the data

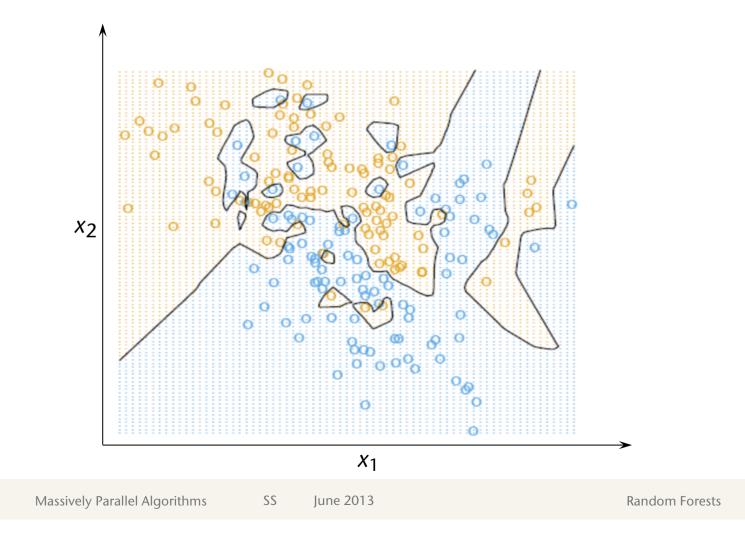


Another Solution: Nearest Neighbor (NN)

4

- For the new point **x**, find the nearest neighbor $\mathbf{x}^* \in {\mathbf{x}_1, \ldots, \mathbf{x}_n} \in \mathbb{R}^d$
- Assign the class l^* to **x**

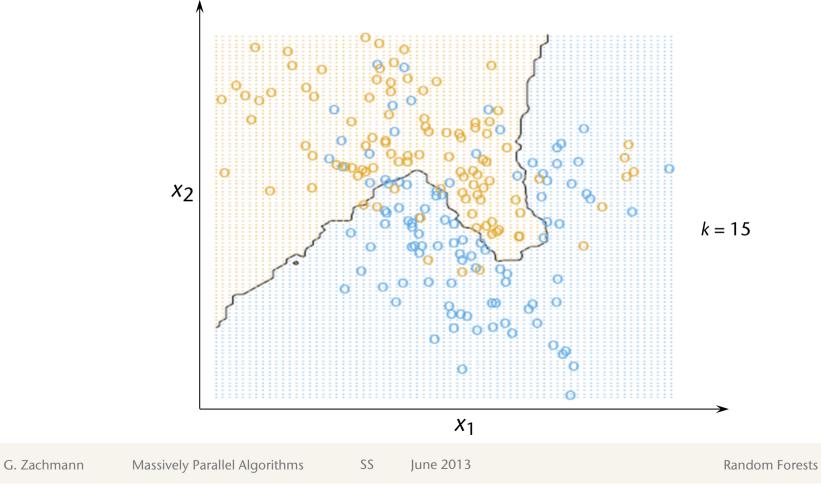
G. Zachmann



Improvement: *k*-NN

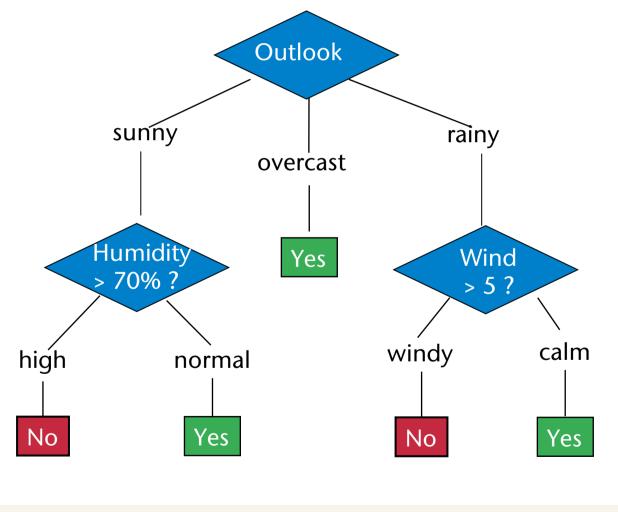
Bremen

- Instead of the 1 nearest neighbor, find the k nearest neighbors of
 x, {x_{i1},..., x_{ik}} ⊂ L
- Assign the majority of the labels $\{l_{i_1}, \ldots, l_{i_k}\}$ to **x**



- The coordinates/components x_{i,j} of the points x_i have special names: independent variables, predictor variables, features, ...
 - Specific name of the *x*_{*i*,*j*} depends on the domain
- The space where the \mathbf{x}_i live (i.e., \mathbb{R}^d) is called feature space
- The labels y_i are also called target, dependent variable, response variable, ...
- The set \mathcal{L} is called the training set / learning set (will become clear later)

Simple example: decide whether to play tennis or not



A new sample (observation): (Outlook=rainy, Wind=calm, Humidity=high)

Pass it down the tree \rightarrow decision is yes.

SS June 2013

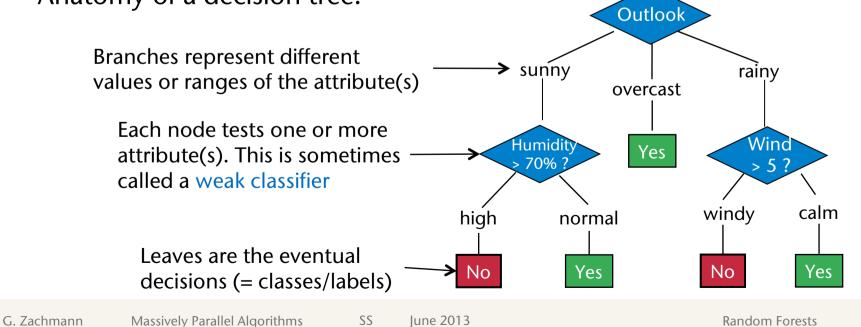
- The *feature space* = "all" weather conditions
 - Based on the attributes

outlook \in { sunny, overcast, rainy },

humidity \in [0,100] percent,

wind \in {0, 1, ..., 12} Beaufort

- Here, our feature space is mixed continuous/discrete
- Anatomy of a decision tree:



Another Example

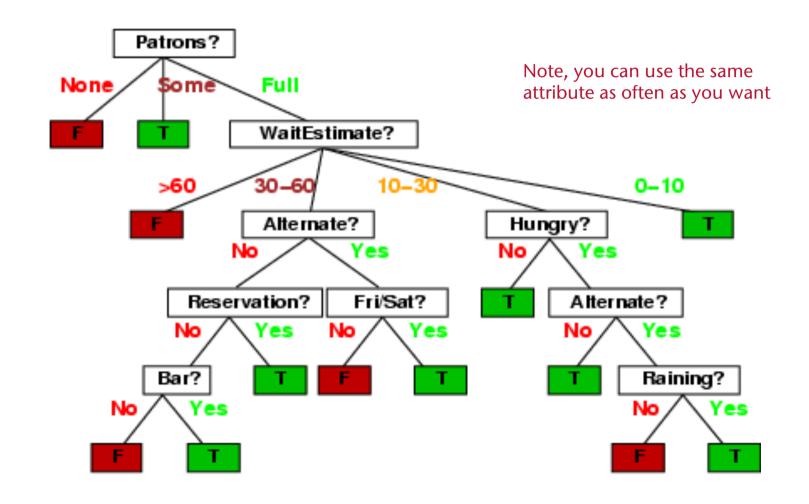
- "Please wait to be seated" ...
- Decide: wait or go some place else?
- Variables that could influence your decision:
 - Alternate: is there an alternative restaurant nearby?
 - Bar: is there a comfortable bar area to wait in?
 - Fri/Sat: is today Friday or Saturday?
 - Hungry: are we hungry?
 - Patrons: number of people in the restaurant (None, Some, Full)
 - Price: price range (\$, \$\$, \$\$\$)
 - Raining: is it raining outside?
 - Reservation: have we made a reservation?
 - Type: kind of restaurant (French, Italian, Thai, Burger)
 - WaitEstimate: estimated waiting time (0-10, 10-30, 30-60, >60)

Example	Attributes										Target
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0–10	Т
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30–60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0–10	Т
X_4	Т	F	Т	Т	Full	\$	F	F	Thai	10–30	Т
X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0–10	Т
X_7	F	Т	F	F	None	\$	Т	F	Burger	0–10	F
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0–10	Т
X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	Т	Т	Т	Т	Full	\$	F	F	Burger	30–60	Т

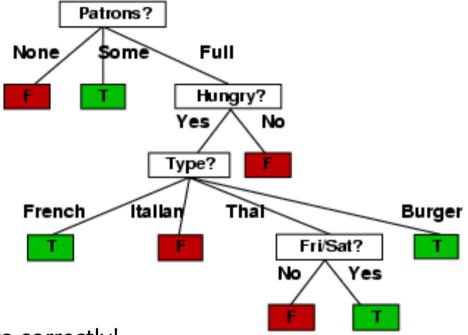
• You collect data to base your decisions on:

 Feature space: 10-dimensional, 6 Boolean attributes, 3 discrete attributes, one continuous attribute

• A decision tree that classifies all "training data" correctly:



A better decision tree:



- Also classifies all training data correctly!
- Decisions can be made faster
- Questions:
 - How to construct (optimal) decision trees methodically?
 - How well does it generalize? (what is its generalization error?)

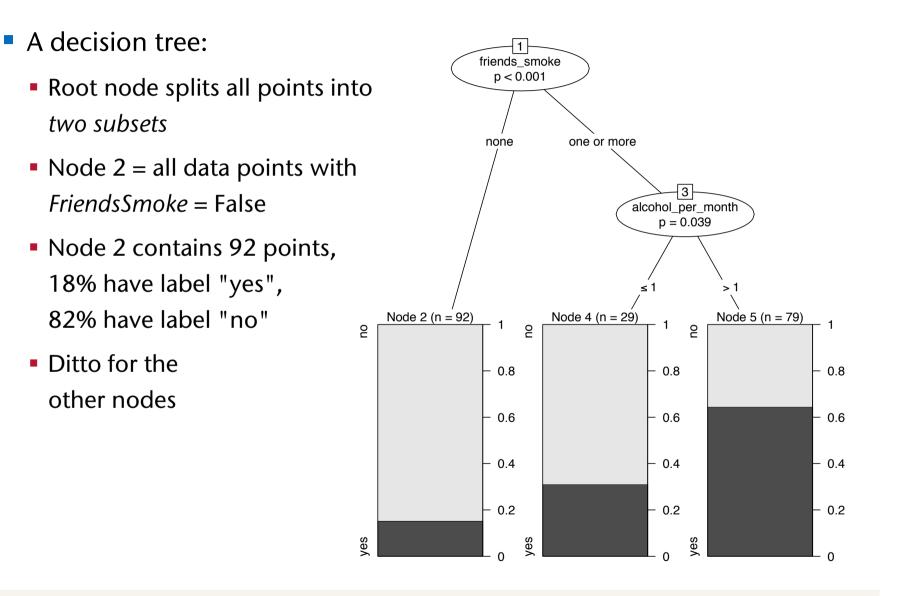
Construction (= Learning) of Decision Trees

- By way of the following example
- Goal: predict adolescents' intention to smoke within next year
 - Binary response variable IntentionToSmoke
- Four predictor variables (= attributes):
 - LiedToParents (bool) = subject has ever lied to parents about doing something they would not approve of
 - FriendsSmoke (bool) = one or more of the 4 best friends smoke
 - Age (int) = subject's current age
 - AlcoholPerMonth (int) = # times subject drank alcohol during past month
- Training data:

Bremen

U

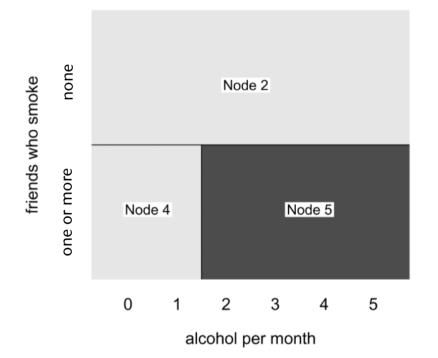
- Kitsantas et al.: Using classification trees to profile adolescent smoking behaviors. 2007
- 200 adolescents surveyed

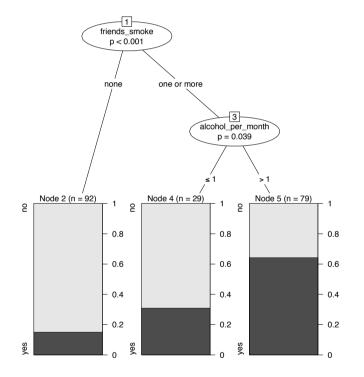


June 2013

SS

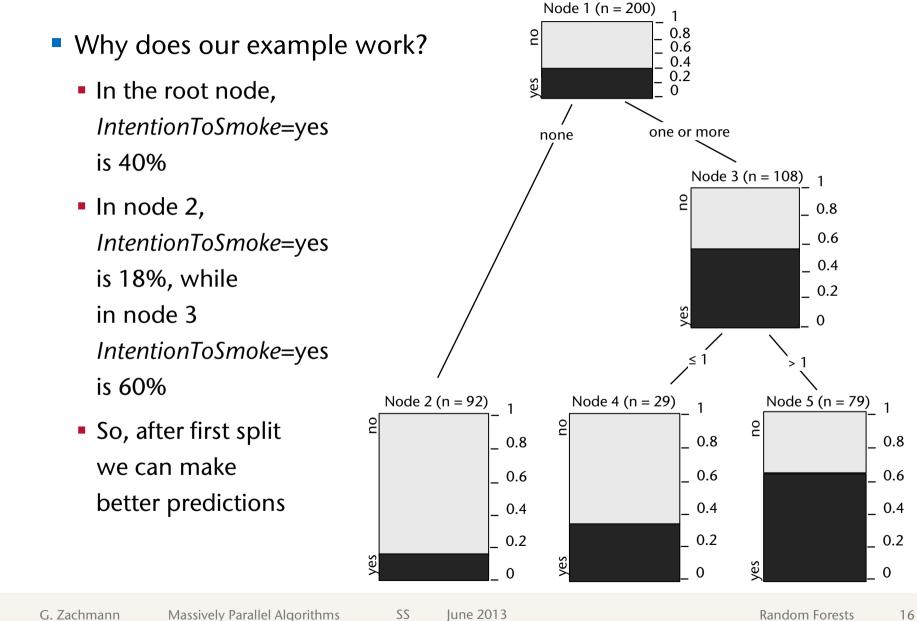
 Observation: a decision tree partitions feature space into rectangular regions:





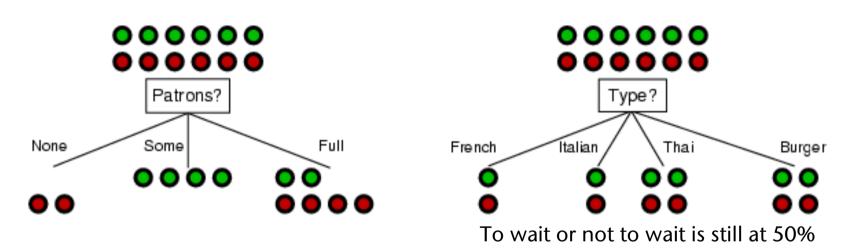
Selection of Splitting Variable and Cutpoint

Bremen



- Ideally, a good attribute (and cutpoint) splits the samples into subsets that are "all positive" or "all negative"
- Example (restaurant):

UŬ



- We want (summed diversity within children) < (diversity in parent)
- Data points should be
 - Homogeneous (by labels) within leaves
 - Different between leaves
- Goal: try to increase purity within subsets
 - Optimization goal in each node: find the attribute and a cutpoint that splits the set of samples into two subsets with optimal purity
 - This attribute is the "most discriminative" one for that data (sub-) set
- Question: what is a good measure of purity for two given subsets of our training set?

- Enter the information theoretic concept of information gain
- Imagine different events:
 - The outcome of rolling a dice = 6
 - The outcome of rolling a *biased* dice = 6
 - Each situation has a different amount of uncertainty whether or not the event will occur
- Information = amount of reduction in uncertainty (= amount of surprise if a specific outcome occurs)

- Let Y be a random variable; then we make one observation of the variable Y (e.g., we draw a random ball out of a box) \rightarrow value y
- The information we obtain if event "Y = y" occurs is

$$I[Y = y] = \log_2 \frac{1}{p(y)} = -\log p(y)$$

- "If the probability of this event happening is small and it happens, then the information is large"
- Examples:
 - Observing the outcome of coin flip $\rightarrow I = -\log \frac{1}{2} = 1$
 - Observing the outcome of dice = 6 $\rightarrow I = -\log \frac{1}{6} = 2.58$

- A random variable Y (= experiment) can assume different values y₁, ..., y_n (i.e., the experiment can have different outcomes)
- What is the *average* information we obtain by observing the random variable?
 - In probabilistic terms: what is the *expected amount of information*?
 → captured by the notion of entropy
- Definition: Entropy

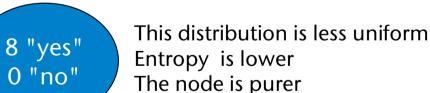
Let Y be a random variable. The entropy of Y is

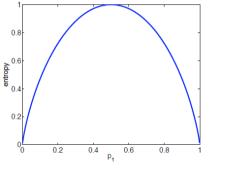
$$H(Y) = E[I(Y)] = \sum_{i} p(y_i)I[Y = y_i] = -\sum_{i} p(y_i) \log p(y_i)$$

• Example: if Y can assume 8 values, and all are equally likely, then

$$H(Y) = -\sum_{i=1}^{8} \frac{1}{8} \log \frac{1}{8} = \log 2^3 = 3$$
 bits

- In general, if there are k possible outcomes, then $H(Y) \leq \log k$
 - Equality holds when all outcomes are equally likely
- With k = 2 (two outcomes), entropy looks like this:
- The more the probability distribution deviates from uniformity the lower the entropy
- Entropy measures the purity:

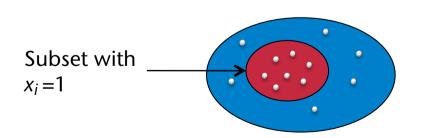




Conditional Entropy

- Now consider a random variable Y (e.g., the different classes/labels) with an attribute X (e.g., the first variable, x_{i,1}, of the data points, x_i)
 - With every drawing of Y, we also get a value for the associated attribute X
- Assume that X is discrete, i.e., $x_i \in \{1, 2, ..., z\}$
- We now consider only cases of Y that fulfill some condition, e.g., x_i=1
- The entropy of Y, provided that it assumes only values with x_i =1:

$$H(Y|x_i = 1) = -\sum_i p(y_i|x_i = 1) \log p(y_i|x_i = 1)$$



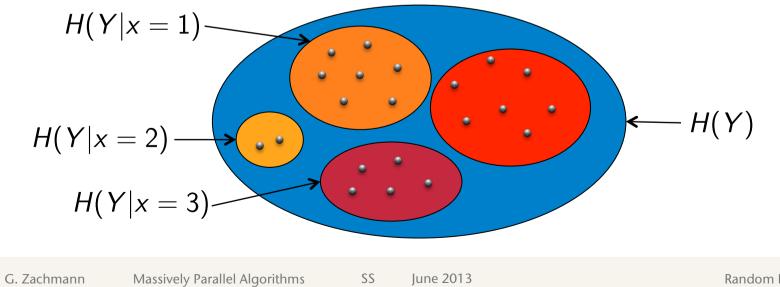
Probability of y_i occurring as a value of Y, where we consider only the subset of values of Ythat have attribute $x_i = 1$

Overall conditional entropy:

$$H(Y|X) = \sum_{k=1}^{z} p(x = k) \cdot H(Y|x = k)$$

= $-\sum_{k=1}^{z} p(x = k) \sum_{i} p(y_i|x_i = k) \log p(y_i|x_i = k)$

Probability that the attribute *X* has value *k*



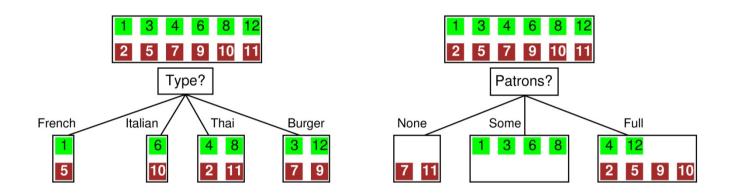
Information Gain

- How much information do we gain if we disclose the value of some attribute?
- Information gain = (information before split) (information after split) = reduction of uncertainty by knowing attribute X
- The information gained by a split in a node of a decision tree:

$$IG(Y,X) = H(Y) - H(Y|X)$$

- Goal: choose the attribute with the largest *IG*
 - In case of scalar attributes, also choose the optimal cutpoint

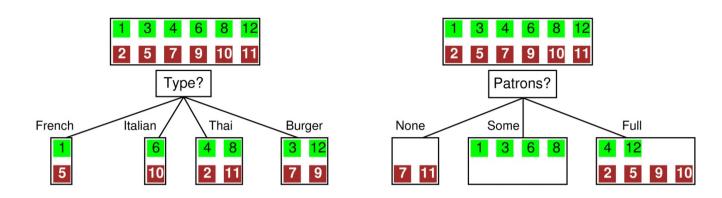
Consider 2 options to split the root node of the restaurant example



- Random variable $Y \in \{ "yes", "no" \}$
- At the root node:

$$H(Y) = p(y = "yes") \log \frac{1}{p(y = "yes")} + p(y = "no") \log \frac{1}{p(y = "no")}$$
$$= \frac{1}{2} \log 2 + \frac{1}{2} \log 2 = 1$$

W



Conditional entropy for right option:

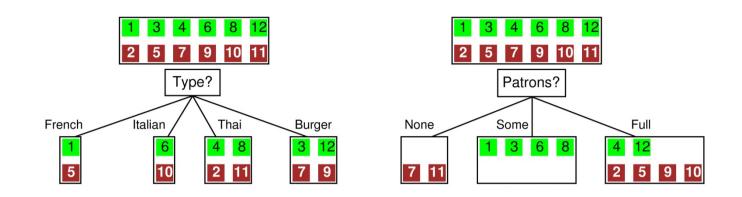
$$H(Y | n) = p(n = "none") \cdot H(Y | n = "none") + p(n = "some") \cdot H(Y | n = "some") + p(n = "full") \cdot H(Y | n = "full")$$

where n = the attribute "#patrons" \in { "none", "some", "full" }

$$H(Y|\#patrons) = \frac{2}{12} (p(y="no") \log p(y="no") + p(y="yes") \log p(y="yes")) + \frac{4}{12} (p(y="no") \log p(y="no") + p(y="yes") \log p(y="yes")) + \frac{6}{12} (p(y="no") \log p(y="no") + p(y="yes") \log p(y="yes"))$$

$$H(Y|\#\text{patrons}) = \frac{2}{12} \left(1\log 1 + 0\log 0 \right) + \frac{4}{12} \left(0\log 0 + 1\log 1 \right) + \frac{6}{12} \left(\frac{4}{6}\log \frac{6}{4} + \frac{2}{6}\log \frac{6}{2} \right)$$

W



Conditional entropy for left option:

$$H(Y|type) = \frac{2}{12} (p(y="no") \log p(y="no") + p(y="yes") \log p(y="yes")) + \frac{2}{12} (p(y="no") \log p(y="no") + p(y="yes") \log p(y="yes")) + \frac{4}{12} (p(y="no") \log p(y="no") + p(y="yes") \log p(y="yes")) + \frac{4}{12} (p(y="no") \log p(y="no") + p(y="yes") \log p(y="yes")) + \frac{4}{12} (p(y="no") \log p(y="no") + p(y="yes") \log p(y="yes")) + \frac{4}{12} (p(y="no") \log p(y="no") + p(y="yes") \log p(y="yes")) + \frac{4}{12} (p(y="no") \log p(y="no") + p(y="yes") \log p(y="yes")) + \frac{4}{12} (p(y="no") \log p(y="no") + p(y="yes") \log p(y="yes")) + \frac{4}{12} (p(y="no") \log p(y="no") + p(y="yes") \log p(y="yes")) + \frac{4}{12} (p(y="no") \log p(y="no") + p(y="yes") \log p(y="yes")) + \frac{4}{12} (p(y="no") \log p(y="no") + p(y="yes") \log p(y="yes")) + \frac{4}{12} (p(y="no") \log p(y="no") + p(y="yes") \log p(y="yes")) + \frac{4}{12} (p(y="no") \log p(y="no") + p(y="yes") \log p(y="yes")) + \frac{4}{12} (p(y="no") \log p(y="no") + p(y="yes") \log p(y="yes")) + \frac{4}{12} (p(y="no") \log p(y="no") + p(y="yes") \log p(y="yes")) + \frac{4}{12} (p(y="no") \log p(y="yes") + \frac{4}{12} (p(y="yes") \log p(y="yes")) + \frac{4}{12} (p(y="yes") \log p(y="yes") + \frac{4}{12} (p(y="yes") \log p(y="yes")) + \frac{4}{12} (p(y="yes") \log p(y="yes")) + \frac{4}{12} (p(y="yes") \log p(y="yes") \log p(y="yes")) + \frac{4}{12} (p(y="yes") \log p(y="yes")) + \frac{4}{12} (p(y="yes")) + \frac{4}{12} ($$

$$H(Y|\text{type}) = 2 \cdot \frac{2}{12} \left(\frac{1}{2}\log\frac{2}{1} + \frac{1}{2}\log\frac{2}{1}\right) + 2 \cdot \frac{4}{12} \left(\frac{2}{4}\log\frac{4}{2} + \frac{2}{4}\log\frac{4}{2}\right)$$

Compare the information gains:

$$IG(Y, \# patrons) = H(Y) - H(Y|\# patrons)$$

= 1 - 0.585

$$IG(Y, type) = H(Y) - H(Y|type)$$

= 1 - 1

- So, the attribute "#patrons" gives us more information about Y
- Compute the IG obtained by a split induced by each attribute
 - In this case, the optimum is achieved by the attribute "#patrons" for splitting the set of data points in the root

- If there are no attributes left:
 - Can happen during learning of the decision tree, when a node contains data points with same attributes but different labels
 - This constitutes error / noise
 - Stop construction here, use majority vote (discard erroneous point)
- If there are leaves with no data points:
 - While classifying a new data point
 - Just choose the majority vote of the parent node

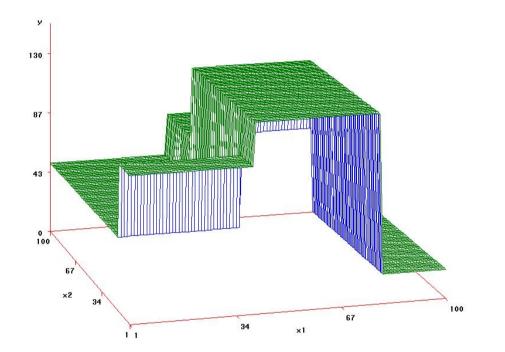
Expressiveness of Decision Trees

- Assume all variables (attributes and labels) are Boolean
- What is the class of Boolean functions that can be represented by a decision tree?
- Answer: all Boolean functions!
- Proof (simple):

Bremen

- Given any Boolean function
- Convert it to a truth table
- Consider each row as a data point, output = label
- Construct a DT over all data points / rows

If Y is a discrete, numerical variable, then DTs can be regarded as piecewise constant functions over the feature space:



DTs can approximate any function

Problems of Decision Trees

• Error propagation:

Bremen

U

- Learning a DT is based on a series of local decisions
- What happens, if one of the nodes implements the wrong decision? (e.g., because of an outlier)
- The whole subtree will be wrong!
- Overfitting: in general, it means the learner performs extremely well on the training data, but very poorly on unseen data → high generalization error
 - When overfitting occurs, the DT has learned the noise in the data

Example for the instability of single decision trees:

